

# Secondary structure restraints in low-resolution refinement

#### Oleg Sobolev, Pavel Afonine

Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA Phenix team

#### Restraints and data resolution

• **Refinement target** - a weighted sum of experimental data ( $E_{data}$ ) and *a priori* chemical knowledge terms (restraints;  $E_{restraints}$ ):  $E_{total} = w * E_{data} + E_{restraints}$ 

• Choice of restraints depends on data quality (resolution, fro example):

<1Å: unrestrained refinement

>3Å: more extra restraints needed

$$\begin{split} E_{\text{restraints}} &= ... + E_{\text{Ramachandran}} + E_{\text{NCS}} \\ &+ E_{\text{ReferenceModel}} + E_{\text{SecondaryStructure}} + ... \end{split}$$

### 

#### Illustration of insufficiency of standard restraints

#### **INPUT**





## Knowledge about secondary structure

2 alpha helices: resseq 2:19 resseq 27:42

# **DESIRED OUTPUT**



- Best density fit
- Correct secondary structure (SS)

#### Illustration of insufficiency of standard restraints

- Refinement with standard restraints fits the model into map well but secondary structure is poor
  - This is because map is not detailed enough and no a priori knowledge was introduced into refinement



#### Complimenting standard restraints with SS restraints may not be sufficient

- Refined model with SS restraints (Final):
  - Model fits map well
  - Some model parts fold into expected secondary structure
  - Some model parts are trapped into local minima and have poor geometry



#### Even good model may be distorted if refined into low-res data without SS restraints

- Refined good starting model without SS restraints (Final):
  - Model fits map well
  - Some model parts fold into expected secondary structure
  - Some model parts are distorted due to low-res and lack of SS restraints





#### Improving use of SS restraints by idealizing initial model

- Generate idealized SS fragments (from sequence or other model)
- Replace existing (poor) parts of model with idealized ones
- Close gaps in main chain
- Use ideal SS as reference model restraints in torsion angle space
- Example:



#### Improving use of SS restraints by idealizing initial model

Ideal SS element Model fragment Aligned element



Rigid body alignment onto model fragment Replacement of model fragment with idealized SS fragment

#### Result: refinement of good starting model with SS restraints

- Refined good starting model with SS restraints (Final):
  - Model fits map well
  - Model possess expected SS



#### **Implementation in Phenix**

- Will be available soon in:
  - phenix.refine
  - phenix.real\_space\_refine
  - phenix.geometry\_minimization
  - Stand-alone tool